A Process for Systematically Collecting Plan of Study Data for Curricular Analytics

Abstract

This theory paper describes challenges and opportunities with analyzing engineering
curricula using the Curricular Analytics framework by offering a data collection framework
for systematically collecting engineering plans of study at scale. Introduced by Heileman and
colleagues in 2017, the Curricular Analytics framework enables researchers and practitioners
to quantify the interconnectedness of their prerequisite structures to unveil gatekeeper courses
and forecast the impact of curricular policies or changes using network-analytic metrics.
These metrics can be calculated using all available data; all one needs to do is transform a
plan of study into a list of courses, prerequisites, and corequisites. However, larger projects
that examine institutional, disciplinary, and temporal differences will likely face difficulties
when wrangling with the details of diverse organizational contexts. This paper outlines the
data entry processes developed by drawing from the research group’s Microsoft Teams
communications for a National Science Foundation sponsored project to explore trends in
curricular complexity across institutions in the Multi-Institution Database for Engineering
Longitudinal Development (MIDFIELD) for five disciplines of engineering across ten years.
We anticipate these suggestions will streamline data collection for similar large scale projects
in the future that employ Curricular Analytics as their analytical approach.

Background

Curricular Analytics involves the quantification of a curriculum to correlate the associated
metrics with proxies for student success, often degree completion rates. To accomplish the
quantification, we represent a plan of study outlining the coursework requirements a student
must complete in order to earn a degree as a network. In the network, courses are represented
as vertices (or nodes) and the prerequisite relationships among them are given by directed
edges (arrows). This data type allows us to calculate a suite of metrics drawn from the pool of
techniques developed in other fields like social network analysis that can help us capture
“complexity” in a meaningful way. First appearing in its most recognizable form in work by
Wigdabhl as the idea of “curricular efficiency” [1], Heileman et al. [2] provide a thorough
treatment of the possible quantities that form Curricular Analytics. At its core, Curricular
Analytics outlines a framework for conceptualizing and measuring curricular complexity.

Curricular complexity is divided into two components: instructional complexity and
structural complexity [2]. Instructional complexity attempts to capture the latent factors of the
curriculum, such as course difficulty and instructional quality, but is currently only proxied
by the pass rate of a course. Explicit advancements in expanding the idea of instructional
complexity are almost non-existent with the exception of Waller, who reframed course
difficulty using the concept of grade anomalies and found it to be more robust of a metric
than individual course DFW rates in his study of organizational factors’ impact on student
success [3]. Structural complexity has been explored to a greater extent, likely because of the
ability to readily access public data and construct simulations with relative ease.

Among the metrics proposed for structural complexity, two have become central to how
complexity is calculated. These are visualized in Figure 1.
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Figure 1. Calculating course cruciality using the blocking and delay factor of the gray course

The first metric is the blocking factor, which is found by counting the number of courses
inaccessible to a student if the course is failed. The second metric is the delay factor, the
length of the longest prerequisite chain flowing through the course. Adding these two values
together yields the cruciality, a local measurement of how entangled a course is in the
prerequisite structures of the plan of study and how essential it is to complete. The cruciality
can be used to find potential bottlenecks, or gatekeeper courses, in the curriculum [4], [5].
For a global measurement, simply add all the crucialities together — this value is called the
structural complexity of the curriculum. These global measurements can be used to compare
curriculum within and across different strata, such as majors within other colleges [6] or
disciplines of engineering [7]. Other efforts have also emerged to apply to connect curricular
complexity with topic-level dependencies between courses [8], incorporate a probabilistic
student flow approach [9], and extend the framework to be sensitive to transfer student issues
[10], [11].

Although the data requirements are minimal, there are distinct challenges to employing this
framework across disciplines and institutions — especially if longitudinal analyses are
planned. For example, curricula are not always completely defined, leaving space for students
to select electives with varying degrees of flexibility. Without specifying these electives, the
curriculum’s complexity may be underestimated. Moreover, there are deeper data entry
considerations; prerequisites can often be a complicated series of ANDs and ORs, with
language like “at least” or “X of the following.” These configurations do not lead to obvious
network representations. Finally, finding accurate plan of study information, even for recent
years, can be challenging. Prerequisite and course information can be inaccurate or may not
have been appropriately maintained by the appropriate institutional office. As Curricular
Analytics is applied more broadly, it is valuable to reflect on current practices and look ahead
for how this framework can be expanded to capture more nuanced curricular representations.

Research Aim

The purpose of this paper is to overview the different obstacles encountered during the data
collection process and the standardized procedures and conventions we developed for a
project employing Curricular Analytics. We outline these procedures not only for
transparency, but to assist other researchers and practitioners who want to use the Curricular
Analytics framework at scale. Given the lack of formal guidance on how to handle plan of
study data for broader projects, we contend this work can become a resource to fill the
current gap in standard practices for proper data entry to analyze curricula.



Drawing Insights from a Broader Longitudinal Project on Curricular Complexity

This work is derived from a larger project focused on quantifying plans of study for five
engineering disciplines (Civil Engineering, Electrical Engineering, Mechanical Engineering,
Chemical Engineering, and Industrial Engineering) to compare the complexity of such
programs across the United States. The sampling frame, in this case, was the Multi-Institution
Database for Engineering Longitudinal Development (MIDFIELD) [12]. Data collection for
the larger project was completed in January 2023. In Fall 2022, five undergraduate research
assistants in the College of Engineering and Applied Science and a PhD student in
engineering education were tasked with entering data from course catalogs over the course of
a decade for thirteen schools in MIDFIELD. To facilitate team communication, we used a
channel in Microsoft Teams. The students were encouraged to talk with one another and ask
questions if they ran into issues during data collection.

One of the major outputs of the NSF project is an R package that will allow users to interact
with the dataset we created, but also use more customized functions to explore different
dimensions of curricular complexity. We chose to write our package in R because of the
existing packages for analyzing data from MIDFIELD, namely midfieldr [13] and
midfielddata [14]. The first of which contains ready-to-go functions for properly processing
data at the student level, and the second package is a stratified random sample from
MIDFIELD for users to practice on and explore. The data produced from this project will be
made available in a similar format. We anticipate the output synergizing with the broader
goal of expanding access to and participation in MIDFIELD’s development [15].

Data Collection

Although originally intended for project communication alone and standardization to ensure
process reliability [16], we found our Microsoft Teams chats to be a valuable source of
practical issues that other teams might encounter when conducting a similar project. The data
source for this work was the set of chats from our team’s communication regarding data entry
within the platform, Microsoft Teams. Due to licensing policies with the university-
sponsored Microsoft Teams account, it was not feasible to export all the chats in the channel
through a request to the university IT department. Instead, after expanding all chats to ensure
longer messages and pictures were not cut off, the Chrome plugin GoFullPage created a pdf
of the channel using the web-browser version of Teams. One small inconvenience of this
method is that the resulting pdf was not searchable, meaning that all relevant questions
needed to be labeled by hand and referenced by number using a spreadsheet. After filtering
out non-data entry questions (e.g., questions about submitting timesheets or meeting time
updates), we were left with 88 questions.

Analysis

We employed descriptive coding to split the questions into categories where similar or
repeated questions could be grouped [17]. To create more generalized questions that removed
specific institutional context, questions within each category were processed using the
constant comparative method [18] to consolidate similar inquiries into one unique question.
The research assistants, both undergraduate and graduate, who entered the data in Fall 2022
were involved in the synthesis of these generalized questions, and their perspectives shared in
weekly meetings are a form of peer debriefing [19]. Among these questions, we selected the
questions related to general data entry and created a flowchart to summarize a process for
entering curricular data in similar projects.

A General Process for Collecting and Extracting Plan of Study Data



Through our data collection processes in Fall 2022, including the discussions and questions
posed during data entry, we have assembled the following considerations for collecting plans
of study for use with the Curricular Analytics framework. These considerations include
methodological issues and general process inconsistencies that can emerge.

Longitudinal Studies of Curricular Complexity
The main study this work is derived is the first longitudinal study of which we are aware that
uses Curricular Analytics. During our process of collecting data across multiple years,
especially trending into the early 2010s and 2000s, we found that data entry can be fraught
with challenges. In particular, several questions were posed regarding the availability of plans
of study and catalogs:
e [INSTITUTIONT’s archived catalogs only go back till 2014. If there are more, how do I find
them? Or did it join late or something like that?
There doesn’t appear to be a catalog for 13-14. Did anyone find it?
e [t seems like Industrial Engineering doesn’t exist as a concentration prior to 2017-2018.

To go back in time and retrieve plans of study dating earlier than those immediately available
through the current institutional websites, we used the Wayback Machine, an archive of
webpages from across the Internet. Especially for searches farther back in time, we
recommend starting from the most general page that can be retrieved, which was often the
department homepage or institutional homepage, and navigating to the appropriate pages for
the registrar and major. Sometimes retrieving older plans of study is not possible because the
Wayback Machine does not archive all webpages. Unfortunately, there is nothing that can be
done without contacting the registrar at the institution to request more information. Keeping
record of the plans of study and the catalog from the years under study and noting where
discrepancies occur is highly recommended.

Analytical Considerations for Curricular Complexity Studies. Preliminary results from our
project suggest that complexity is not necessarily stable from year to year. Small curricular
changes can have a noticeable impact on structural complexity. Consider one of the
MIDFIELD institutions in Figure 2. Here we can see comparisons of the form “X is more
structurally complex than Y does not hold uniformly from year to year. In this case,
mechanical engineering eventually switched places with chemical engineering from 2019-
2020 to 2020-2021. Thus, we suggest other researchers consider the longitudinal behavior of
complexity in their studies. In particular, looking back a few years to check how stable the
prerequisite structures are would be useful as a quality and validity check.
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Figure 2. Trajectories of four engineering disicplines at one MIDFIELD institution
demonstrating that structural complexity is not necessarily stable year to year; note that the
catalog for 2013-2014 was unable to be found

Non-Trivial Prerequisites

Although many courses will have simple prerequisite structures that do not require special
treatment, there are more complicated relationships that can be decomposed such that they
can be represented in the network. These questions were frequent in our discussions, a
selection of which are below:

This has nested "Or" options is there a good way to show this in the excel files?;”

How should we show prerequisites like this given that there are "Or" + "And"? Should I just
list them all and separate them with a comma?

Also, I just saw that there was a prereq where you could take two classes from a "this or that".
How should I work that into the prereq chain? [Note: “this or that” refers to a configuration
where a student can pick one of two courses to satisfy a requirement. |

MATH 160 is the first math course with MATH 161 and 261 coming in later, and some
courses have prereqs like this: MATH 160 or MATH 161 or MATH 261, In this case, what do
we write down as prereqs?

For this it says 6 of the 7 courses, what should I do about this?

This senior design class has a bunch of prereqgs, and some of the are in a this or that in the
POS. For example, GEEN 1400 is a prereq for the senior design class but you can choose
between GEEN 1400 and ASEN 14000 or ECEN 1400 in semester 1. Should I keep the this
or that and put the elective course in the prereq section or just choose GEEN 1400 as the only
class you take?

Curricular Analytics implicitly assumes that courses have a simple “AND” configuration to
describe prerequisites; for example, MATH 101 AND MATH 102 are required for ENGR
105. However, for certain courses, these configurations can involve “ORs” that are also
nested within “ANDs,” such as (MATH 101 OR MATH 101H) AND PHYS 101. These are
often combined with grade cut-offs, such as “Min Grade C-.”” Last, some courses have
prerequisite structures that offer a list of courses and require the students have passed a subset
of them using language like “at least” or “X of the following.” None of these situations are
addressable in Curricular Analytics as currently defined, except that it is acknowledged on
the FAQ page of the tool’s website that OR relationships tend to be irrelevant [20].



To help explore whether these are indeed factors needed in curricular complexity, we
introduce the following notation in Table 1 to enter the data as they are shown in course
catalogs. As the framework evolves, we foresee the estimates of structural complexity to be
an average of different scenarios. Our next steps involve incorporating the functionality in
our R package to calculate the structural complexity for different configurations.

Table 1. Notation for prerequisite structures

Prerequisite Type Notation Example
AND When a list of courses must be MATH 101, MATH 102
completed, each one is separated by a
comma.
OR When the option between MATH 101 + MATH 102
prerequisites is given, we use the +
symbol.
Both Logical Combine the comma and + notation (MATH 101 + MATH 102),
Connectives to represent the prerequisite structure. MATH 103

Use parentheses to group.

Subset of Course Use the keyword FROM and list the FROM(MATH 101, MATH 102,
courses followed by the number of MATH 103)[2]
courses to consider in brackets.

Minimum Grade Use the keyword MINGRADE, name  MINGRADE(MATH 101)[C-]
the course and insert the minimum
grade in brackets

We are currently experimenting with this notation, so to transform back to the original
version — using purely AND connectives, we would convert all “+” to “,”, remove all
parentheses, and extract the courses inside the FROM and MINGRADE notation. Next, any
courses that do not appear would be removed from the list of requisites. This approach would
match how a researcher would conventionally enter the data. Starter R script is provided

below.

ConvertToOriginalNotation <- function (RequisiteStructure) {

RequisiteStructure <- gsub("\\+", ",",RequisiteStructure)
RequisiteStructure <- gsub("[()]", "", RequisiteStructure)
RequisiteStructure <- gsub ("FROM|MINGRADE", "", RequisiteStructure)
RequisiteStructure <- gsub("\\[.*2\\]", "", RequisiteStructure)

return (RequisiteStructure)

ConvertedRequisites <- sapply(RequisiteStructures, ConvertToOriginalNotation)



Incorporating Minimum Grades. The one prerequisite type that is not immediately clear
how to best incorporate yet is the minimum grade condition, but it is certainly a structural
barrier that students must overcome. A weight could be placed on such courses to account for
the additional barrier of increased expectations before moving into the next course(s) and
should be explored further. The minimum grade is most closely associated with the blocking
factor because it is an additional barrier to progress into the next set of courses, so it would be
sensible to incorporate it into the metric. Alternatively, because the minimum grade is a
condition of the edge (i.e., the prerequisite) and not the vertex, a different metric might be
necessary. A common term for these minimum grades is the “C-Wall,” referring to imposing
a minimum C grade for introductory coursework to enter second year offerings or graduate
altogether. For example, one potential metric (which we can call “C-Wall” density, CWD)
could be weighted sum of overall edges in the network (i.e., e € E) where we assign some
value to each edge based on a function Q, as depicted in the following equation:

CWD = Z 0(e)

eEeE

For example, Q could take on the value zero for any prerequisite without a minimum grade
requirement. For a D- minimum, Q can assign a value of 1/3 and increment up in steps of 1/3
(to account for the +/- system of grades).

Non-Calculus-Ready Pathways. Building from our previous observations regarding non-
trivial prerequisite structures, these most often occur with courses in the first year. Such
prerequisite structures result from attempts to account for diverse offerings of mathematics
courses to reflect differences in students’ academic preparation. Some requirements span
beyond coursework, including minimum SAT and math place scores — which we observed in
our sample. When constructing the plan of study, the standard operating procedure was to
only consider courses in the plan of study. However, to consider student’s diverse pathways
into the curriculum, researchers may consider incorporating the mathematics prerequisite
structures that form the pre-calculus block of offerings. Data from Pirkey and Santiago [21]
show retention statistics for students in engineering at West Virginia University, revealing
that 29% percent of students were not Calculus-ready and an overwhelming majority of
students in their second semester were enrolled in Trigonometry. The prevalence of non-
Calculus-ready students raises additional questions about how we represent the situation in
Curricular Analytics, especially considering being Calculus-ready in the first semester is a
significant predictor of completing an engineering degree [22]. There are opportunities to
analyze not only the expected pathway for the average first-time-in-college student but also
for students who do not have the necessary math background to start in the intended
mathematics course.

The notation in Table 1 can help facilitate such analyses if that is the researcher’s intent.
Otherwise, the notation can be converted to the standard form and analyzed normally. Only
courses that appear in the list would be incorporated into the construction of the prerequisite
structure in our R package.

Illogical Arrangements and Inconsistencies. Occasionally, there will be instances where a
configuration in the plan of study results in an illogical arrangement of prerequisites or
corequisites, as evidenced in the following sample of questions:
o Corequisites in different terms: There is a course that is calling for a coreq but the course it
wants as a coreq is listed under a previous year. Should I place it as a prereq instead?
e Prerequisites not in the plan of study because of course changes: For 14-15, there is as
course ME 221 that prereqs ME 210: Statics of Mechanic. But this course isn’t the POS,



instead there is EM 214: Statics. For 16-17, EM 215 was the prereq for ME 221. Do [ assume
this as a typo?
e Missing courses/credits: For the same POS, the total sum of the credits is given as 128, but is

actually 129. And, there are 3 credits missing.
Though not mentioned in our chats, upon inspecting plans of study for logical arrangements,
an error that occurred was accidently listing a corequistite as a prerequisite — which would
create a theoretically impossible structure. Other issues can appear as well, so it is critical to
note where potential errors have occurred. We contend these inconsistencies emerged
because of our longitudinal scope, introducing situations where courses become defunct and
are replaced with a new offering or sets of offerings, but this change does not become fully
represented in the plan of study or catalog. During data entry or post-processing, it is
suggested that researchers check for illogical arrangements, particularly with prerequisites in
the same term and corequisites in different terms, against the original plan of study. If it is
indeed the intended arrangement, add a note on the same line in the spreadsheet. If not, make
the necessary adjustment.

Hidden Laboratory Coursework
Engineering curricula include laboratory-focused courses to allow students to apply
principles from lecture to physical systems, and their realization in the curriculum can vary.
We observed that plans of study would either have a specific laboratory course with a
corequisite relationship to the lecture course or describe an integrated laboratory experience
that is mentioned by course name and number or no distinct course at all. Questions would
emerge related to how these could be handled, for example:
e How should I show labs for a class that has the labs "baked in" with the class?
e If there is arecitation class, should I include it even if it doesn’t show as a coreq and it has no
credits?
e Some classes haverecitation some don't, I wasn't sure if we wanted to call that out. The way
labs for EE classes are listed is the same as above. No course name or number and no mention
in the POS other than what comes up when you go to look at the prereqs and coregs.

We found it helpful to untangle these hidden laboratory requirements by creating a course
with zero credit hours with a corequisite relationship with the lecture course to unveil the
additional burden on students that they create. In our view, bundling the lecture and
laboratory can underestimate the true structural complexity because credit hours are not
factored into the calculations at all. This convention we adopted placed all courses with labs
on the same footing.

Assumptions about Corequisite Relationships

The measures in Curricular Analytics rely on the idea of a directed acyclic graph, a type of
network where none of the directed edges form a cycle. In other words, by following the
edges from vertex to vertex, you will never be able to revisit a vertex. These curricular graphs
are directed acyclic graphs by design because prerequisite and corequisite relationships
naturally build on one another. It would not make sure for a course taken later in the
curriculum to be a prerequisite for a course in a previous term; thus, there is no reasonable
potential for a cycle to form. However, there is one exception - mutual corequisite
relationships. For example, we have seen cases where a course and its lab list one another as
corequisites. The courses then form a cycle, which makes calculating the delay factor
impossible. But the redundancy is not needed, so it is more sensible to only have one edge
connecting the two.



Deciding the direction of the corequisite relationship is a nontrivial decision, which came
about when the validity of the plan of study data was being evaluated. To illustrate why,
consider the simplest possible configuration where the distinction is evident: Course A is a
corequisite with Course B and Course B is a prerequisite for Course C. If we have the
corequisite relationship defined as Course B points to Course A, we can calculate the
structural complexity to be 8. Next, by simply changing the direction of the corequisite
relationship, we see the structural complexity rise to 12 — an increase of 50%! This is
troubling because we did not change anything fundamental about the prerequisite
relationships; the interpretation is the exact same — Courses A and B are intended to be taken
together. However, the direction of the relationship has a significant impact on the course
crucialities and the overall structural complexity as a result.

Why does this occur? The issue lies in the calculation of both the blocking factor and delay
factor. When we change the direction of the corequisite relationship, we create a different
path for requisite relationships to flow. As a result, the delay factors change for all three
courses. In the first configuration, Course A does not have any paths out of the vertex but is
connected to Course B, so its delay factor is 2; it also does not block any courses, so its
blocking factor is 0. However, once we switch the direction of the edge, suddenly Course A
becomes part of the prerequisite chain formed by Course B and Course C. This changes all
the delay factors for A, B, and C to 3 and increases Course A’s blocking factor to 2.

b(A) =2 B(A) =0 h(4) =1 b(A) =0
d(4) = 2 d(A) =2 d(4) =3 d(4) =3

Structural
Complexity
12

Structural
Complexity

8

B(A) =0 B(A) =2
d(A) = 2 d(4) =3

Figure 2. Tllustrating the impact of changing the direction of a corequisite relationship (in
blue); one change in directionality changes structural complexity by 50%; b(.) is the blocking
factor and d(.) is the delay factor

The researcher must be consistent with defining the corequisite relationships to ensure the
complexity values are internally consistent. If a convention for directionality is not
universally applied in a dataset, then the comparability among plans of study is questionable.
We could argue for either configuration, and we believe it is immaterial which orientation is
chosen; it is critical that the assumption made about directionality should be reported, at least.

Another way to circumvent this decision is to ignore corequisite relationships when
calculating the delay and blocking factors; one could argue that corequisite relationships are
not as strict as prerequisites and providing them with equal weight might misrepresent the
complexity of a given plan of study. The advantage of ignoring the corequisites when
calculating the blocking and delay factors is that the solution will be unique, but that
uniqueness will come at the cost of model completeness.

Course Timing Conventions

Course timing as an idea emerged in three different ways during our data collection
procedures: the value add of term information in structural complexity, issues when plans of
study were not specified at the term level, and additional terms that were not Fall or Spring.



Value Add in Term-Weighting Structural Complexity. In these models, term numbers do not
add additional information into the #ypical calculations. Instead, they are used to create a
more informative and readable visualization. However, as this research strand continues to
develop, knowing when courses occur will become more relevant for alternative metrics. For
example, if one would like to analyze a curriculum from a transfer student’s perspective,
knowing which term they enroll would be a critical piece of information, which would be
matched up with the relevant courses. Moreover, DeRocchis et al. introduced the idea of
term-weighted structural complexity [23] The concept involves multiplying the cruciality of a
course by the term it occupies, which punishes courses that are part of dense prerequisite
structures later in the curriculum. Researchers should consider exploring the weighted and
unweighted structural complexity to parse the value add of the term information.

When Plans of Study Are Not Organized by Term. Occasionally, a plan of study will not
specify when a course is taken and may only provide the year or simply a list of courses.
Questions about this occurred more frequently early in data collection:

e The sections are according to years, not semesters. What do I do about this?

e There's an extra summer semester in which they take 12 credits of electives. What do I do
about this?

e AndI've also made quite a lot of such assumptions for the 3 years of [INSTITUTION], they
didn't have a semester-by-semester breakdown too. Where do I document every assumption, I
made? In the same row as the course where I assumed?

For this, we would suggest first entering all the required courses and prerequisite information,
then organizing the courses term by term based on the prerequisite relationships. To form
coherent plans of study, using credit hour loads to check the reasonability of a configuration
1s advised. If the number of credits is too small, then the student will not have full-time status.
If the number of credits is too large, then the student would possibly incur overload charges.
Move around less connected courses before adjusting the timing of courses in denser
prerequisite structures. Some catalogs provide information on when the courses are offered,
which can clue the research in to where the student is most likely to take the course in
question. If not, searching the course on a website like Coursicle provides the recent
semesters it was offered.

Summer and Winter Terms. There might also be situations where a course is specified to be
taken during a Summer or Winter term. A simple solution is to treat the extra term just like a
Fall or Spring session and count the terms normally. Alternatively, and what is used in the R
package in development, is the convention of 1 = Fall, 2 = Spring, 3 = Summer, 4 = Fall, 5 =
Spring, 6 = Summer and so on. Similarly, for Winter terms, 1 = Fall, 2 = Winter, and 3 =
Spring. This convention makes it more visually obvious that a Summer term is incorporated
and allows us to calculate metrics that incorporate limited offerings into our calculations [10],
[11]. However, by labelling the terms using the explicit Summer term, we inevitably cause
issues when calculating term-weighted metrics. To accommodate the labelling convention,
the package automatically adjusts for the empty terms by discarding them and renumbering
the terms.



To record plan of study level assumptions, notes about Summer courses like what is
discussed in this section were entered into a dataset-level Word document. Upon completion
of data collection, this Word document serves as a manual for the dataset allowing other
researchers to understand the way in which the individual plans of study were created —
increasing research transparency.

Representing Electives

When entering courses into a plan of study,
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A more complete picture of a plan of study’s complexity can be obtained by splitting the data
into two pieces, one “base” spreadsheet and one “elective” spreadsheet. The base spreadsheet
captures exactly what a researcher would enter when applying the Curricular Analytics
framework. When giving an elective a name, ensure it reflects the type of elective. For
example, suppose there are two types of technical electives that students need to choose
called Depth electives and Breadth electives. In the elective spreadsheet, we would copy the
list of courses under these electives and create a new column that associates the courses with
their elective group. The elective spreadsheet will serve as a pool of possible courses to pull
from to estimate the expected structural complexity when we factor in student choice with
electives. The algorithm for estimating the cruciality for each elective is given in Figure 3.



Using the base plan of study and elective list, we create all possible permutations of courses
and store them in a list. In R, the data can be stored like so:

configurations <- list(c('ENGR 100', 'ENGR 101','ME 100'"),c('ENGR 100', 'ENG
R 101', 'ME 191"))

Note that there will be repeated entries as individual courses are swapped out to form a new
configuration, but repeated entries where a course simply switches spots with another are
discarded. Once the list is generated, use a for loop to run through all the configurations.
Check if the configuration is valid, meaning that prerequisite and corequisite relationships are
not violated. If it is not valid, rearrange the courses into different elective slots on the base
plan of study. If the plan of study is valid, then the cruciality of each elective is calculated.
Store those in an atomic vector or data frame to keep track of the values for each
configuration. Once a passable arrangement is found, we will move on to the next
configuration. At the end of the loop, take the mean of the individual elective crucialities to
obtain an estimate of the expected cruciality. To yield the expected structural complexity, add
the estimates to the base structural complexity.

The resulting adjusted value then incorporates the ability for students to choose a subset of
their courses. We are planning to incorporate this functionality into our R package to perform
the necessary analysis.

Webscraping to Automate Data Collection

During our data collection processes, we considered different ways that we could automate
data entry at least partially. Because the course catalogs also had descriptions of all the
different courses that were available at the institution for that catalog year, a web scraper in
Python could be used to scrape these descriptions, including the course code, full course
name, number of credit hours, and the requisite paragraphs. The BeautifulSoup library was
used in conjunction with Pandas to arrange the data into the standardized format. From there,
only the course codes and the terms columns needed to be entered, and Python could be used
to import the plan of study file, convert it into a data frame, analyze which courses were
taken, import the descriptions of those courses from the scraped catalog data, and fill in the
full course names, the number of credit hours and the requisite structure, and update the plan
of study file with this information. Then, the researcher would only have to look at the
requisite structure, determine which courses should be entered into prerequisites and
corequisites, and enter that information. For institutions with predictable and standardized
HTML formatted catalogs, this process enabled us to move much more quickly than manual
data entry.

Issues with Automating Data Collection. However, when conducting a study with multiple
institutions across multiple year, automating the data collection in the way we described was
not feasible. The complete data entry, especially as described in Table 1, was generally not
time efficient from a programming perspective because of the various ways institutions
would organize their course descriptions. Instead, whereever possible, the pre- and
corequisite information was scrapped into files for the remaining cleaning to be done
manually. For example, consider a course taken in term 2, PHY'S 2001, has prerequisites,
MATH 2001, or MATH 2002. In this case, the prerequisite entered into the spreadsheet
would depend on which MATH course was taken in term 1, MATH 2001 or MATH 2002.
So, it was a difficult task to extract the requisite structure in a format that could make
automation simple given the different formats different institutions used for their catalogs,



and even the difference in formats within an institution. Some institutions had a direct
approach and listed out the requisites explicitly, whereas others had a descriptive paragraph
to explain the structure. Within an institution, most lower-level courses had simple structures,
but higher-level courses tended to have a more complicated structure. Therefore, it was
difficult to write a “one size fits all” code, so each institution would have to be handled
differently. For other researchers considering a similar approach, consider the costs and
benefits of creating a web scraper to handle the data entry — especially when exploring
diverse institutions.

A Flow Diagram Synthesizing Our Data Collection Framework
To synthesize our frequently asked questions and processes developed during our data
collection process, we offer a suggested process for reducing ambiguities while completing
data entry for Curricular Analytics at scale. We divided it into three components: pre-
processing (Figure 4), processing (Figure 5), and post-processing (Figure 6). In pre-
processing, we made a pdf of the source material, such as the website or catalog page using
the naming convention: InstitutionName CatalogYear DisciplineName POS.pdf. For the
data file, we used the convention InstitutionName CatalogYear DisciplineName Base.csv
for the specified courses and InstitutionName_CatalogYear DisciplineName_Elective.csv for
elective. The CatalogY ear will be whatever year range is on the title of the catalog. For
example, if the catalog year is 2021-2022, then the CatalogY ear will be 2122. The pre-
processing step takes into account cases where summer terms appear (or winter terms,
equivalently) and if courses are not assigned to terms or semesters (such as by year). The
processes in Figure 5 handle data processing, including all of the conventions we established
earlier for non-trivial prerequisite structures, embedded labs, and additional enrolment
requirements. In Figure 6, we clean up any loose ends by checking for mutual corequisites
and sorting courses without term assignments because courses were not specified by semester
by rebalancing courses free to move until credit hour distributions fall between the minimum
to be enrolled and below the maximum.



Retrieve plan of study and
course catalog information
from institutional website

!

Name the source document (InstitutionName_CatalogYear_DisciplineName_POS pdf) and create two csv files:
InstituticnName_CatalogYear_DisciplineName_Base.csv and InstitutionName_CatalegYear_DisciplineName_Elective.csv with
the following celumns: Full_Course_Name, Course_Name, Term, Prerequisites, Corequisites, Credit_Hours, and Notes. In the
elective spreadsheet, add a column to the left named Elective_Group and deletfe the Term column

Use labeling convention of 1 = Fall, 2 =
Spring, 3 = Summer, 4 = Fall, 5 = Spring,
6=Summer and so on.

Check if there
are summer
terms

Check if courses
are not assigned
to terms

Leave term column blank during first pass.

Iterate through each
course in the plan of study

Figure 4. Pre-proccessing before entering data for a plan of study
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Verify direction of
coreq with source
document, delete
one and add the

decision to Notes

column

Are courses True
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False

Are all courses
assigned to a
ferm?

Are credit hour
distributions at
least full-fime and
not overloaded?

Sort courses into sensible A
terms while respecting
requisite structures Stop

Figure 6. Post-processing after completing entry

Contributions to Theory in Curricular Analytics

We contend that this work advances the theory and application of Curricular Analytics in
engineering education research in two distinct areas: (1) establishing a process for systematic
data collection and (2) extending how researchers can account for multiple pathways in terms
of electives.

As of writing, there is little to no guidance for how a research team would collect data for
Curricular Analytics at scale. We have illustrated through our findings in this paper that
entering plan of study data across departmental, institutional, and temporal contexts carry
heavy implications in terms of assumptions that must be made to achieve the desired
formatting. Prerequisite and corequisite relationships are often not logically simple - that is, a
set of courses that must all be taken to enroll in the course. Instead, prerequisites can have
both AND and OR logical connectives (e.g., (MATH 101 and MATH 102) or (MATH
103H)), subsets of a longer list of approved courses (e.g., three of the following: ....),
minimum grade requirements (e.g., MATH 101 with min C-), or a combination of all three.

Second, we advanced how future researchers can think about a broadened perspective on a
plan of study’s complexity. One potential critique that can be made of how data are typically
entered for studies on curricular complexity is the simplification of electives. For general
education courses and other requirements that are mostly independent of the major-specific
courses, specifying these has little impact on the structural complexity metrics. As such, they
are often labelled as “Gen Ed” or some equivalent and left without prerequisites or
corequisites.

However, applying the same treatment to major-specific electives is less defensible
analytically. Often upper-division courses that serve as electives have prerequisites, which
are lost when they are aggregated into a generic “Tech Elective” category. Yet, incorporating
the electives into the plan of study directly poses a different problem. We could specify the
most common sets of electives students take, but this decision would ignore the students’



agency afforded to them by the premise of these elective courses. On the other extreme, we
could create a plan of study for every possible pathway, but this would be a tedious data entry
task.

Our suggestion in this theory paper is a two-staged data collection process that balances the
desire to calculate the complexity of a curriculum using available data and incorporate
student agency into the analyses. When we do not incorporate student agency, meaning we do
not specify elective courses or pathways, we are not calculating the true structural complexity
of the curriculum. We are calculating the expected base structural complexity of the
curriculum as envisioned by the faculty. By base, we are referring to the set of courses and
their prerequisites that are specified as required by the faculty in the plan of study. We add
the qualifier “expected” because students have agency over the base structural complexity as
well — not just electives — through transfer credit, AP credit, and exceptions. Thus, by
reframing how we think and talk about structural complexity, albeit slightly, we can be more
precise in its theoretical and practical applications.

Conclusion

We anticipate this work being useful to researchers and practitioners interested in systematic
analyses of curricula, especially in combination with student data to explore retention-related
issues for first-time-in-college students. The dataset being created will be freely available,
and others are encouraged to add their own plans of study. We offer the standard operating
procedures in this paper, along with data conventions, to best facilitate the large-scale
analysis of this type of network data. As the dataset grows, we anticipate the ability for the
community to understand and interrogate the programmatic barriers to student success in
engineering across the nation will also expand — leading to a cornucopia of previously
unexplored questions at scale.
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